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SUMMARY

The problem of enforcing normal transport conditions on 3D velocity ®elds is considered in the context of `wave
equation' ®nite element models. A procedure for strong enforcement of the transport constraint is given. The
procedure is identical for Neumann (transport known) and Dirichlet (pressure known) problems, which are
treated reversibly. All local mass and force balance relations are retained in the FEM system. A global mass
conservation property is proven for the general 3D, discrete-time case. Examples demonstrate the quality of the
solutions and the practicality of the approach.# 1997 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 25: 1185±1205 (1997).
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1. INTRODUCTION

Use of the ®nite element method for estuarine and coastal circulation studies has grown signi®cantly

in recent years. Practical 3D problems are now being solved on large, unstructured meshes using both

harmonic-in-time and more general time-stepping approaches. The combination of advanced

turbulence closure, tidal time resolution and variable spatial resolution (both horizontally and

vertically) provides a new, comprehensive simulation capability for these important environmental

systems. (For recent reviews see References 1 and 2. References 3 and 4 provide state-of-the-art

collections.)

As in other areas of ¯uid mechanics, boundary conditions continue to be a focus of concern, even

for 2D problems. Recent BC contributions in the FEM coastal context include those of Westerink et

al.,5 who examined the role of BCs in the generation of spurious modes, Johnsen and Lynch,6,7 who

developed radiation BCs, and Kolar et al.,8 whose focus is similar to ours (see below).

In the present paper we examine the implementation of normal ¯ow (Neumann) conditions in the

3D context. We speci®cally focus on the `Wave Equation' form of the 3D shallow water equations, as

developed in 3D by Lynch and Werner9,10 and Lynch et al.2,11 for implementation on simple C0

elements. Our objective is to achieve a workable approach with the following properties:
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(a) global mass conservation

(b) normal transport enforced strongly on the velocity solution at the boundary

(c) reversibility among Dirichlet (speci®ed pressure) and Neumann (speci®ed normal transport)

problems.

Item (a) we take as a self-evident goal. Item (b) implies that boundary transports which appear in

mass balance relationships will in fact be properties of the velocity solution. Item (c) addresses the

equivalence between discrete solutions of the Dirichlet and Neumann problems and effectively

demands that both problems be governed by an identical set of boundary constraints.

These issues were examined previously12 in a simpler 2D, harmonic-in-time context. In that study,

mass conservation was proven and a strong, reversible procedure demonstrated which eliminated

O�h� errors in conventional velocity solutions. Comparisons with an analytic solution con®rmed that

accuracy was upgraded from O�h� to O�h2�. Kolar et al.8 generally con®rmed these ®ndings in a 2D

time-stepping context, although the strong enforcement of Neumann conditions was not pursued. The

result was a velocity discontinuity at the boundary, with the velocity solution retaining the O�h� errors

and only weakly connected to the mass-conserving boundary ¯uxes.

We ®nd here that it is possible to meet all three goals for the general 3D time-stepping case; and

that doing so provides superior solutions. We present a theoretical proof of the mass balance property,

a discussion of implementation issues and idealized test cases which demonstrate the quality and

reversibility of the solutions. We also include a practical example wherein an awkward boundary

condition problem is addressed. Throughout we focus on a hydrostatic, Boussinesq ¯uid; thus wave

propagation occurs in the horizontal only and volume and mass conservation are synonymous.

2. MASS BALANCE RELATIONS

2.1. Continuous-time domain

We ®rst establish a basic conservation property of the weighted residual method used in

conjunction with the wave equation. The basic idea is that of Lynch;12 here we develop it further in

the general context of 3D time domain solutions.

We begin with the continuity equation in 3D:

H � v � s
r
; �1�

and its vertical integral

@H

@t
� Hxy �

�z
ÿh

v dz � r; �2�

where v�x; y; z; t� is the ¯uid velocity, z�x; y; t� is the free surface elevation, h�x; y� is the bathymetric

depth, H�x; y; t� is the total ¯uid depth H � h� z; s=r is the volumetric source rate (¯uid

volume=time=unit volume) and r is the vertically integrated source term
� z
ÿh
�s=r� dz plus net

precipitation at the free surface. The essence of the wave equation formulation is to use the time

derivative of (2) to compute H:

@2H

@t2
� t0

@H

@t
� Hxy �

@

@t
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� ��z
ÿh

v dz

" #
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@t
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with t0 a numerical constant.* The weak form of (3) of interest here is the weighted residual with test

function fi,�
@2H

@t2
fi

�
�
�
t0

@H

@t
fi

�
ÿ
�
Hfi �

@

@t
� t0

� ��z
ÿh

v dz

" #�
�
�
@

@t
� t0

� �
qfi ds�

�
@

@t
� t0

� �
rfi

�
; �4�

where h; i is the inner product notation (domain integration);
H

ds is the related line integral

enclosing the domain; and q is the normal component of transport across the boundary, directed out

of the domain. Here it is convenient to introduce the boundary transport integral Qi and to re-express

(4):

Qi �
�

qfi ds; �5�

�
@2H

@t2
fi
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�
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� t0

� �
rfi

�
: �6�

We require that the test functions be C0 continuous on the domain and in addition have the

property
P

fi � 1, and therefore
P

Hfi � 0, everywhere. Summing all the equations (6), we obtain

the basic global mass balance�
@2H

@t2

�
�
�
t0

@H

@t

�
� @

@t
� t0

� ��
q ds �

�
@

@t
� t0

� �
r

�
: �7�

We introduce the following simple notation: S � hHi is the total mass in the system,

Q �PQi �
H

q ds is the rate of mass ef¯ux from the system, R � hri is the rate of mass creation

within the system and I � dS=dt � Qÿ R is the system-wide mass imbalance. In these terms, (7)

becomes

dI

dt
� t0I � 0; �8�

I � I0eÿt0t: �9�
Clearly, the analytic solution has I � 0 always and the weak form (6) will have this property provided

that I is initially zero, i.e. the initial conditions are in balance. If not, then the imbalance will be

eliminated at the rate t0. Round-off error accumulated in the mass balance will be removed at the

same rate.

This mass balance is valid for any quadrature approximation to the integrals h i and
�

ds provided

that all terms of the weighted residual are evaluated with the same quadrature in any given element.

The speci®c quadrature used de®nes the integrations of the global quantities S;Q;R and I .

Implementation of these ideas in 2D, harmonic-in-time circulation models is described in

Reference 12 and corroborated in other applications (e.g. References 13 and 14).

1. Neumann conditions. Here q is know a priori. The Neumann data are inserted directly into the

boundary integral in (6), supporting the solution for H . The same data are used as a strong

constraint on the velocity, i.e.
� z
ÿh

v � n̂ dz is speci®ed.

2. Dirichlet conditions. Here q is unknown a priori, but H is known. The reduced system of

weighted residuals is solved for H in the conventional way; then the `neglected' WR equations

are used to compute the boundary integrals �@=@t � t0�Qi, which is then used to constrain the

velocity exactly as in the Neumann problem.

* The momentum equation is eventually substituted for the divergence term in (3), but that will not matter here.
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In this way we achieve perfect reversibility between Neumann and Dirichlet problems, since the

same relations are used in both cases, and retain in either case the global mass balance*.

The relations among the boundary quantities (Q; q) and the domain solution v need to be clearly

de®ned if the mass balance (8) is to be useful. With v expanded in the horizontal basis

f; v�x; y; z; t� �P vj�z; t�fj�x; y�, we have

Qi �
P �z

ÿh

vj dz �
�

n̂fjfi ds �10�

or equivalently, with Nij �
H

n̂fifj ds,

Qi �
P �z

ÿh

vj dz � Nij: �11�

Throughout the preceding 3D model development2,9,10 we have routinely used quadrature points

located at the nodes of simple linear elements, which has the effect of lumping mass matrices such as

the one de®ning Nij here. With nodal quadrature, equation (10) reduces to the simple form

Qi � Ni �
�z
ÿh

vi dz � Dsin̂i �
�z
ÿh

vi dz; �12�

with Ni � �Ds1n̂1 � Ds2n̂2� the quadrature approximation to Nii. Its unit vector n̂i is the `nodal

normal'; its magnitude Dsi is an effective local boundary segment. These quantities are illustrated in

Figure 1(a) for simple linear elements. The nodal normal so de®ned has been widely used since the

early FEM investigations.15,16

It is important to note that for a straight boundary, n̂i is unambiguous and Dsi is simply one-half of

the sum of adjacent boundary element lengths. Discretized boundary curvature effectively shortens

Dsi as in Figure 1(a), and the nodal normal favours the longer adjacent boundary element.

The constraint on velocity is simply equation (12) in reverse:

n̂i �
�z
ÿh

vi dz � Qi

Dsi

� qi; �13�

Figure 1. Nodal normal n̂i and boundary segment Dsi: (a) common boundary with curvature; (b) corner

* The `conventional' implementation of Dirichlet boundary conditions (H known), wherein the local weighted residual
equations are not enforced, loses the property

P
fi � 1 and therefore the mass balance is compromised.
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whereby qi, the nodal transport, is de®ned. At a corner, as illustrated in Figure 1(b), we have the

additional constraint

n̂2 �
�z
ÿh

vi dz � 0: �14�

This is enforced simultaneously with equation (13). Together they imply the equivalent pair of

constraints

n̂1 �
�z
ÿh

vi dz � Qi

Ds1

; �15�

n̂2 �
�z
ÿh

vi dz � 0; �16�

which is perhaps more appealing intuitively.

This general procedure is directly applicable to the 3D time domain case. What remain to be shown

are (a) a temporal discretization for the boundary transports and the resulting discrete-time mass

balance and (b) a method for constraining the 3D velocity ®eld vi�z� with the 2D Neumann data qi.

2.2. Time domain discretization

The discrete-time form of (6) is obtained by conventional second-order ®nite difference

approximations. Introducing time levels k ÿ 1, k, and k � 1 separated by uniform Dt, we have

@H

@t
� Hk�1 ÿ Hkÿ1

2Dt
; �17�

@2H

@t2
� Hk�1 ÿ 2Hk � Hkÿ1

Dt2
�18�

or equivalently, using DHk � Hk ÿ Hkÿ1 (the change in storage over time step k),

@H

@t
� DHk�1 � DHk

2Dt
; �19�

@2H

@t2
� DHk�1 ÿ DHk

Dt2
: �20�

Additionally, we introduce the boundary transport �Qk
i as a discrete representation of the total normal

transport over the time step k, i.e.

Dt �Qk
i �

�k

kÿ1

Qi dt � Dt�eQk
i � �1ÿ e�Qkÿ1

i �; �21�

and similarly for �rk . An appropriate discretization of the boundary ¯ux in equation (6), centred at time

k, is

@

@t
� t0

� �
Qi �

�Qk�1
i ÿ �Qk

i

Dt
� t0

�Qk�1
i � �Qk

i

2
: �22�
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(It is assumed that �Q0
i is known or computable from the initial conditions. Recall that wave equation

algorithms require initial conditions at two time levels.)

Substitution of these difference expressions into (6) gives the complete discrete-time form of

equation (6):�
1

Dt

�
DHk�1

Dt
ÿ DHk

Dt

�
fi

�
�
�
t0

DHk�1

2Dt
� DHk

2Dt

� �
fi

�
ÿ
�
Hfi �

@

@t
� t0

� �k�z
ÿh

v dz

" #�
� ÿ

�Qk�1
i ÿ �Qk

i

Dt
� t0

�Qk�1
i � �Qk

i

2

� �
�
�

�rk�1 ÿ �rk

Dt
� t0

�rk�1 � �rk

2

� �
fi

�
: �23�

Summing as above, we obtain the discrete-time mass balance

1

Dt

DSk�1

Dt
ÿ DSk

Dt

� �
� t0

DSk�1

2Dt
� DSk

2Dt

� �
�

�Qk�1 ÿ �Qk

Dt
� t0

�Qk�1 � �Qk

2
�

�Rk�1 ÿ �Rk

Dt
� t0

�Rk�1 � �Rk

2

�24�
where, as above, Dt �Qk is the total transport into the system during time step k, i.e.

Dt �Qk �
�k

kÿ1

Q dt; �25�

and similarly for �Rk . We introduce the discrete system mass imbalance, integrated over time step k,

I k � DSk � Dt �Qk ÿ Dt �Rk; �26�
and (24) reduces to

I k�1 ÿ I k � t0Dt

2
�I k�1 � I k� � 0; �27�

I k�1 � I k 1ÿ t0Dt=2

1� t0Dt=2

� �
: �28�

Equation (28) is clearly a discrete-time form of (9), to which it converges in the limit of in®nitesimal

Dt.* It has the analogous properties: mass imbalance introduced through either initial conditions or

round-off will decay unconditionally. In addition, we observe that the decay will be monotone for

t0Dt < 2 and oscillatory (but stable) for larger time steps.

3. IMPLEMENTATION IN 3D

We introduce here the 3D momentum equation

@v

@t
� f � vÿ @

@z
N
@v

@z

� �
� ÿ 1

r
HP � F �29�

* Note that
1ÿ t0Dt=2

1� t0Dt=2

� �
� eÿt0Dt � O�t0Dt�3.
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and its vertical boundary conditions

N
@v

@z

����
z�z
� HC; �30�

N
@v

@z
ÿ Kv

� �����
z�ÿh

� 0; �31�

where f is the Coriolis parameter, N is the eddy viscosity, and P is the pressure. Advective non-

linearities and horizontal viscous terms are assumed to be treated explicitly in a time step, included in

F. HC is the known atmospheric stress and K is a bottom slip coef®cient linearized over the time

step. This system is solved as a 1D ODE for the function vi�z� at each horizontal node i.

The speci®c time discretization we employ has the linear terms centred in the time step and R

explicit. The average velocity over a time step, �vk�1
i , is de®ned for convenience as

�vk�1
i � vk�1

i � vk
i

2
; �32�

Dvk�1
i � vk�1

i ÿ vk
i � 2�vk�1

i ÿ 2vk
i : �33�

The discrete form of (29)±(31) is then

2

Dt
� f �ÿ @

@z
N
@

@z

� �� �
�vk�1

i � 2vi

Dt
� Fi

� �k

ÿ 1

r
HPi; �34�

N
@�vk�1

i

@z

����
z�z
� HCi; �35�

N
@

@z
ÿ K

� �
�vk�1

i

����
z�ÿh

� 0: �36�

3.1. The Neumann problem

For the 2D equations the Neumann problem is trivial. The given Neumann data q are entered in the

boundary integral in (6) for H . The tangential portion of the momentum equation is enforced, with the

constraint Hv � n̂ � q. The normal momentum equation is sacri®ced in the process. Note that the

tangential velocity is also affected, since it is coupled to the normal velocity through the Coriolis

term.

In 3D we have the problem of enforcing q on the vertical integral of v. Because of the Coriolis

term, both normal and tangential force balances couple throughout the water column and a more

subtle approach is needed. We approach this problem by observing that the normal component of the

pressure gradient in (29) is imperfect, consisting of one-sided derivatives and lacking any direct

boundary condition information. We therefore correct the pressure gradient with an additional

normal-directed barotropic component, suf®cient to produce the known normal transport:

1

r
HP � 1

r
HPI � an̂; �37�

where HPI is the `interior', imperfect pressure gradient and a is to be determined. To do this, we solve

(34)±(36) twice: once as written, with a � 0, for the conventional or `interior' velocity; and a second

`exterior' solution driven only by a unit barotropic pressure gradient normal to the boundary, with
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homogeneous boundary conditions. The two solutions are then superposed with enforcement of the

normal transport dictating the parameter a.

Equation (34) is solved for the internal solution �vk�1
I :

2

Dt
� f �ÿ @

@z
N
@

@z

� �� �
�vk�1

Ii �
2v

Dt
� F

� �k

i

ÿ 1

r
HPIi; �38�

subject to the boundary conditions (35) and (36). This is exactly the conventional velocity

calculation. The same linear operator applies to the external solution �vk�1
E :

2

Dt
� f �ÿ @

@z
N
@

@z

� �� �
�vk�1

Ei � ÿn̂i; �39�

subject to homogeneous boundary conditions (i.e. equation (35) with HC � 0 and equation (36)

which is already homogeneous). The complete solution is then

�vk�1
i � ��vk�1

I � a�vk�1
E �i; �40�

with a given by the requirement that n̂ � � zk�1

ÿh
vk�1 dz � qk�1:

ai �
qk�1 ÿ n̂ � � zk�1

ÿh
�2�vk�1

I ÿ vk� dz

n̂ � � zk�1

ÿh
2�vk�1

E dz

24 35
i

: �41�

Two sequential solutions are thus required, using the same linear operator. Their superposition

according to (32), (40) and (41) completes the time step in the conventional way:

vk�1
i � 2�vk�1

i ÿ vk
i : �42�

3.2. The Dirichlet problem

In this problem, q is not known a priori, rather H is known. Our approach is to deduce the

equivalent Neumann data and to enforce them on the velocity solution as described above. We solve

the system of wave equations (23) with the Dirichlet data enforced and the corresponding WR

equations removed. The boundary integrals

Bi � Dsi

qk�1
i ÿ qk

i

Dt
� t0

�qk�1
i � �qk

i

2

� �
are then evaluated with the unused WR equations (23), enabling extraction of �qk�1

i . We then obtain

the transport at the end of the time step:

qk�1
i � qk�1

i ÿ �1ÿ e�qk
i

e
: �43�

The velocity calculation may proceed exactly as in the Neumann case. Effectively, we have identi®ed

the equivalent Neumann data for the Dirichlet problem.

Note that equation (43) contains a homogeneous mode for the series qk�1
i which will be unstable

for e4 1
2
. We con®rm this in practice. In the problems below we used e � 0:53, which we have found

to be generally suitable.
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4. TEST PROBLEM 1

The ®rst case is intended to demonstrate (a) the signi®cant impact of the mass-conserving BC on the

velocity solution, relative to conventional practice, and (b) the reversibility of the Dirichlet and

Neumann problems. To do this, we use a simple rectangular domain (Figure 2). Typical of many

practical studies, there are extensive open-water boundaries and apparently simple boundary

conditions on pressure that support complex patterns of subtidal ¯ow through an essentially open

system. We use large-amplitude tidal forcing here to enhance the subtidal motions through non-linear

tidal recti®cation.

The general parameters for this problem are as follows.

1. Depth decreases linearly from the coast to the offshore boundary, from 10 to 55 m.

2. Latitude is 43�5�.
3. Land boundary conditions are no normal ¯ow throughout the vertical.

4. There is no wind forcing and the mass ®elds are homogeneous.

Dirichlet boundary conditions were imposed in terms of periodic (M2) plus residual elevation as in

Figure 7. The results are shown in Figures 3±5, after periodicity had been achieved. In Figure 3, a

time series of one period in length is shown of the vertically averaged velocity and gHzI � n̂ at nodes 1

and 9 (see Figure 2 for location) for the simulation with the conventional formulation. In Figure 4 a

similar set of time series is shown for the mass-conserving simulation. Note in Figure 4 that a
(equation (37)) is also shown. In the node 1 and 9 plots a signi®cant increase can be seen in the y-

direction velocity of the mass-conserving simulation. The x-direction velocity of node 1 is zero

because of the land boundary. The difference in node 9 of the x-direction velocity is caused by the

coupling of the x- and y-direction velocities through the Coriolis force. The plots of gHzI � n̂ and a
show clearly that the conventional formulation has not captured the correct pressure gradient at the

boundary. In Figure 5, plots of the residual vertically averaged velocity for the two formulations are

shown. As expected the internal solution is not greatly changed, but closer to the boundary some

Figure 2. Shelf meshÐwidth 18 km, length 39 km, Dx � 2 km, Dy� 1 km
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signi®cant differences can be found. The mass-conserving formulation has at node 19 (see Figure 2

for location) an increase of 0�3072 m s71 in the residual vertically averaged speed (refer to Figure 5).

In the M2 constituent the maximum increase was at node 1 with a value of 0�9190 m sec71 (refer to

Figures 3 and 4).

Figure 3. Conventional formulation time series of one period: left panels, node 1; right panels, node 9; top panels, vertically
averaged velocity; bottom panels, gHzI � n̂

Figure 4. Mass-conserving formulation time series: convention same as Figure 3, but bottom panels also include a
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Neumann BCs were obtained as a periodic time series of q from the above solution. Interestingly,

these time series contained higher harmonics of the M2 constituent, as expected for a non-linear

simulation (see e.g. Figure 4). The time series q was used to force a second solution, initialized from

the Dirichlet solution in periodic steady state. Results appear in Figures 6 and 7. The reversibility of

Figure 5. Residual vertically averaged velocity with Dirichlet boundary conditions: left panel, conventional formulation; right
panel, mass-conserving formulation

Figure 6. Mass-conserving formulations with Neumann boundary condition time series: convention same as Figure 4
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the two approaches is demonstrated by the retrieval of the original Dirichlet solution on the boundary.

Figure 7 shows the recovery of the M2 and residual constituents; higher harmonics were negligible.

Further con®rmation of the reversibility is the reproduction of the velocity and pressure gradient time

seriesÐcompare Figures 6 and 4.

Global mass balance for this simulation is demonstrated in Figure 8. Therein we display time series

for the two quantities � �
z dx dy and

�t

0

� �z
ÿh

v � n̂ dz ds dt0

and their difference, beginning from initial conditions (at rest) and continuing through one tidal

period. The mass balance is con®rmed even in the presence of start-up `wiggles'.

In addition to its global property, the mass-conserving boundary condition generally provides

improved local solutions. To illustrate this, we have severed the mesh of Test problem 1 as shown in

Figure 7. Elevation boundary conditions used to force Dirichlet simulation, and boundary elevations obtained from Neumann
simulation. The two simulations are identical even in the physically unrealistic corner areas (e.g. nodes 9 and 10)
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Figure 9 and simulated the same problem on the lower portion. Initial conditions were taken from the

large-mesh simulation once periodic steady state was reached; Dirichlet boundary conditions across

the top boundary were taken from the same solution. The resulting velocities are shown in Figures 10

and 11 for conventional and mass-conserving velocity calculations along the top boundary. The mass-

conserving calculation is clearly faithful to the prototype, with the ¯ow entering smoothly along the

top boundary. The conventional boundary velocity calculations show a systematic veering relative to

the prototype. (In both cases, mass-conserving Dirichlet conditions are enforced on the other two

open boundaries.)

Figure 9. Illustration of cut in mesh of Test problem 1, along with tidally and vertically averaged velocities. This is the
prototype for evaluating the calculations shown in Figures 10 and 11

Figure 8. Comparison of
� �

z dx dy and
� t

0

� � z
ÿh

v � n̂ dz ds dt0 for Test problem 1. The system is started from rest at t� 0. The
®rst tidal period (1024 time steps) is plotted

Figure 10. Velocity obtained on truncated Test problem 1 mesh with mass-conserving Dirichlet conditions across top boundary.
The velocity is generally in agreement with the prototype, Figure 9
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5. TEST PROBLEM 2

The second case is inspired by a practical modelling problem we face in our Gulf of Maine studies2

(see Figure 12). In this case there is a signi®cant computational cost associated with computing the

detailed local tidal resonance in the Bay of Fundy. The practical solution is to place an arti®cial

boundary across the Bay of Fundy and drive the system with observed tidal elevation. This is entirely

satisfactory for tides alone, but the subtidal motions associated with, for example, wind events would

be arti®cially constrained by the Dirichlet BCs on pressure.

From a physical perspective the boundary is effectively impermeable at subtidal time scales. For

example, in the following section we study a strong wind event lasting 60 h with elevation change of

order 20 cm in the bay. The neglected area shown in the mesh of Figure 21 is roughly 4� 109 m2.

Total transport across the bay boundary would therefore be approximately 0�003� 106 m3 sÿ1 during

such an event. This is negligible in the context of the seasonal mean circulation, wherein ¯ows of

order 0�2� 106 m3 sÿ1 are circulating around the deeper portions of the bay included in the model.17

The desired BC would therefore be a mixed one: Dirichlet BCs for tidal response and homogeneous

Neumann BCs for the subtidal motions. Thus the unmodelled portion of the bay would resonate

properly with the tide and would present a no-¯ow boundary to the subtidal motions, with subtidal

pressure free to respond.*

In earlier studies using a harmonic-in-time model,18,19 separate calculations are made at tidal and

subtidal frequencies and therefore the mixed BC strategy is possible. In the time domain this option is

not available. Instead, we exploit the reversibility of the Neumann and Dirichlet BCs developed here.

The system is forced with periodic Neumann BCs (i.e. time-averaged normal transport equals zero),

with the Neumann data obtained from (and equivalent to) a Dirichlet simulation with tides alone.

To illustrate this, we use the idealized mesh shown in Figure 13. The tidal boundary conditions are

®rst approximated by a pure M2 Dirichlet condition across the bay boundary; typically this would be

obtained from ®eld observations. The Dirichlet simulation was run until periodic steady state was

reached. The non-linearities created both higher harmonics and a small non-zero residual in the q-

signals. These were ®ltered to retain only the M2, M4 and M6 constituents for q. The Neumann

solution forced with these signals therefore did not match the original `correct' Dirichlet solution

perfectly, so the process was reiterated with a fuller elevation spectrumÐincluding a non-zero

residual elevationÐfor the Dirichlet problem. After two iterations a reasonable match was

obtainedÐFigures 14 and 15Ðand the periodic q-signal with zero mean as illustrated in Figure 15

was adopted as the tidal forcing. The resulting residual transport patterns are illustrated in Figure 16.

Figure 11. Same as Figure 10, except conventional Dirichlet conditions are enforced across top boundary. The velocity solution
veers at the top boundary in comparison with Figure 9

* Note that a conventional radiation condition here, whereby an in®nite ocean is presumed outside of the domain, would be
inappropriate.
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Figure 12. Gulf of Maine map

Figure 13. Bay meshÐwidth 20 km (at bottom) and 18 km (at top), length 39 km, Dx� 2 km, Dy� 1 km
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This tidal forcing was used to simulate the effect of a steady wind plus tides on this mesh. Dirichlet

conditions were used on the rest of the wet boundaries.* Results for the residual elevation appear in

Figure 18 and may be contrasted with those in Figure 17 which was computed with Dirichlet

conditions, i.e. with the residual pressure response clamped. The signi®cant discrepancy between the

two responses illustrates the importance of the Neumann condition in this context, wherein it is

justi®ed on physical grounds. In Figures 19 and 20 we show the residual transport along the bay

boundary for the Dirichlet and Neumann conditions respectively.

6. FIELD-SCALE SIMULATION

This idea has been implemented on a realistic Gulf of Maine mesh (Figure 21) for a transient wind

event. The wind forcing is taken from observed data for March 1986. (See Reference 20 for more

information.) The mass ®elds are a climatological representation of the March±April season and the

offshore boundary conditions are also seasonal. The Bay of Fundy cut is forced with the Dirichlet

condition and compared with the physically correct Neumann condition (obtained as described in

Test problem 2).

The main purpose of this case is to show aptitude in a realistic simulation under severe wind

forcing. The most illustrative quantities to compare are the moving average normal residual transport

and elevation at a node along the Bay of Fundy boundary (see Figure 21 for location). In Figure 22

these quantities are shown for both the Neumann and Dirichlet conditions, as well as the normal wind

Figure 15. Neumann solution with M6, M4 and M2 transport: vertically averged velocity at nodes 381 and 411 (see Figure 13
for location)

Figure 14. Dirichlet solution with residual elevation: vertically averaged velocity at nodes 381 and 411 (see Figure 13 for
location)

* Residual elevation was zero on the eastern boundary and in approximate geostrophic balance on the southern boundary.
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stress at the node. The moving average is done to eliminate the tidal response and therefore the results

in Figure 22 show no net residual transport in the Neumann case and show constant elevation in the

Dirichlet case.

The effect of the boundary condition can be seen in Figures 23 and 24 for Dirichlet and Neumann

conditions respectively. In the Dirichlet case the 3D ®eld is effectively ¯owing into an in®nitely deep

Figure 16. Residual transport forced by tide only. Left panel, Dirichlet condition; right panel, Neumann condition. Note the
replication of even the short-wavelength `noise' in the upper right corner

Figure 17. Residual elevation response with Dirichlet condition forced by tides and wind

NORMAL FLOW BOUNDARY CONDITIONS 1201

# 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 25: 1185±1205 (1997)



Figure 19. Residual transport of upstream region with Dirichlet condition

Figure 20. Residual transport of upstream region with Neumann condition on bay

Figure 18. Residual elevation response with Neumann condition on bay forced by tides and wind
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Figure 21. G2S meshÐ6756 nodes, 12,877 elements. The circle on the Bay of Fundy boundary is node 6721 in the next ®gures

Figure 22. Moving average time series at node 6721. The normal direction convention is positive out of the domain and
negative into it. The x-axis is in hours and the averages are plotted at the end of the averaging period
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ocean instead of the small, bounded bay. However, in the Neumann case it is evident that the

circulation feels the presence of the enclosed bay and reacts accordingly with return ¯ow at depth.

7. CONCLUSIONS

There are a few main points.

1. Equations (7), (8) and (24), (27) are global mass balance relations which govern all solutions

obtained with the procedures outlined. Solutions initially in balance will remain so; mass

imbalance is removed at the rate t0.

2. The equivalence of the Neumann and Dirichlet problems guarantees that the mass balance

relations pertain in either case, with the participating boundary transports matched to the normal

component of the velocity pro®le on the boundary according to equation (12) or (13).

3. The strong enforcement of normal transport on the 3D velocity solution is done not by

discarding momentum balances at the boundary but by correcting the interior pressure gradient

there. This fact is obscured in 2D analyses but clear in 3D. Equation (41) de®ning a is the key

relation.

4. The inference of the boundary transport along Dirichlet boundaries is given by equation (43).

This discretization requires e > 1
2

for stability.

5. Mass-conserving solutions obtained with these procedures are superior to their `conventional'

predecessors.

Figure 23. Residual velocity at surface (left) and bottom (right) with Dirichlet condition across cut; t� 40�365 h

Figure 24. Residual velocity at surface (left) and bottom (right) with Neumann condition across cut; t� 40�365 h. Note that v � n̂
is positive (outward) at the surface and negative at depth; its vertical average is zero
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